1. Instructor Information:
Dr. Upul Senaratne
Assistant Professor
email: usenaratne@worwic.edu

Office Phone No. 410-572-8729
Room 103E Henson Hall

Lecture Hours: Office Hours:
MON/WED 12.45 -2.15 pm Tuesday: 4.45 – 6.15 pm
Lab: Section: MON: 2.30 – 4.30 pm Wednesday: 2.30 – 3.30 pm & 6.15 – 7.15 pm
 Thursday: 4:45 – 6.15 pm or by appointment.
Lecture Room: BH 330, Lab: HH 203

2. Course Level: 100 (first year)

3. Course Title: PHY 121 General Physics

4. COURSE MATERIALS:
 (i). TEXTBOOK:
 (Access card is essential to access homework and other resources)
 If desired, electronic copy of the text and the access code can be purchased from Pearson

 (ii). SCIENTIFIC CALCULATOR (without problem storage and memory)

 (iii) GRAPH PAPER (approximately 10 graph sheets are required (10 squares to the centimeter).
 Students are required to produce computer generated graphs using EXCEL or other programs.
 (Please see your instructor for guidance)

 (iv) Pencils, eraser, ruler, protractor

 (v). Blackboard Statement:
 Blackboard is being used as a supplementary site in this course. To access course content in
 Blackboard you need to have access to a computer with an Internet connection, (other requirements
 may apply).
 Please refer to this link for computers available on campus that meet these requirements:
 http://www.worwic.edu/Students/LearningResources/ResourceLabs.aspx
Please follow these directions to access course syllabi and any other materials posted for this course:

Login Information
1. From the Wor-Wic home page, click on myWor-Wic (top-right above Quick Links).
2. Enter your Wor-Wic user ID and password (same as your Wor-Wic email user ID and password) to access the portal homepage.
3. In the “My Blackboard Classes” web part, click on a class listed to be directed to the Blackboard site.
4. Blackboard may also be accessed through Quick Links on the college homepage and also through a link at the bottom of the homepage.
 Don't know your user ID or password? Contact student services.

(vii). Academic integrity and computer/Blackboard usage policy:

All students logging into Blackboard affirm that they understand and agree to follow Wor-Wic Community College policies regarding academic integrity and the use of College resources as described in the college catalogue. Wor-Wic Community College considers the following as violations of the computer usage policy:
 • Using the campus computing network and facilities to violate the privacy of other individuals
 • Sharing of account passwords with friends, family members or any unauthorized individuals
Violators are subject to college disciplinary procedures

5. COURSE DESCRIPTION: This is the first part of a two-semester algebra-based four-credit hour course designed to give students a general knowledge of kinematics, Newton’s laws of motion, energy and momentum and their conservation, rotational motion, wave motion, temperature and heat. Hours: 39 lectures and 26 laboratory hours. Prerequisite: MTH 154 with a grade of “C” or better or permission of the department head. Laboratory fee: $30. (Offered in the fall and spring).

6. COURSE OBJECTIVES:

Upon the successful completion of this course, the student will demonstrate the ability to:

<table>
<thead>
<tr>
<th>Course Objectives</th>
<th>Assessment Goals</th>
<th>Assessment Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evaluate physical phenomena using fundamental quantities. (GEO 1, 3, 4, 5, 6)</td>
<td>A. Describe physical observations with measurement using S.I. system</td>
<td>quizzes, Lab discussion and applications Written assignments</td>
</tr>
<tr>
<td>2. Employ the use of vector mathematics to describe physical observations. (GEO 1, 3, 4, 6)</td>
<td>A. Demonstrate the resolution of vectors into its component; B. Determine a vector from its components; and C. Demonstrate proficiency in vector algebra.</td>
<td>Exam questions, quizzes Lab discussion and applications, Written assignments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **3.** Describe the motion of an object using kinematic equations. (GEO 1, 3, 4, 5, 6) | A. Calculate the constant and accelerated motion of an object in one dimension using the kinematic equations;
B. Calculate the instantaneous velocity of a moving body;
C. Describe the motion of a body in free fall;
D. Demonstrate the use of vectors in calculation of motion in two dimensions; and
E. Describe the behavior of a projectile using kinematic equations for motion in two dimensions. | Exam questions, quizzes, Lab discussion and applications, Written assignments |
| **4.** Demonstrate the use of Newton’s three laws of motion. (GEO 1, 3, 4, 5, 6) | A. Describe Newton’s laws of motion, and demonstrate how they are consistent with each other;
B. Apply Newton’s laws of motion to the description of the motion of a body;
C. Apply Newton’s laws of motion to the description of the motion of a system of bodies; and
D. Apply Newton’s laws of motion to the description of the motion of a body or bodies experiencing static and or kinetic friction. | Exam questions, quizzes, Lab discussion and applications, Written assignments |
| **5.** Apply the concepts of equilibrium to describe the forces acting on a rigid body. (GEO 1, 3, 4, 5, 6) | A. Describe and apply the first condition of equilibrium;
B. Summarize and apply the concept of torque on a body;
C. Describe and apply the second condition of equilibrium to a rigid body;
D. Define the concept of center of mass; and
E. Apply the first and second conditions of equilibrium to the analysis of rigid bodies. | Exam questions, quizzes, Lab discussion and applications, Written assignments |
| **6.** Apply the concepts of uniform circular motion. (GEO 1, 3, 4, 5, 6) | A. Discuss centripetal acceleration and its direction;
B. Apply the unit of radians to the analysis of uniform circular motion;
C. Derive and apply the equation for the magnitude of centripetal acceleration;
D. Derive and apply the equation for the magnitude of centripetal force; and
E. Apply Newton’s law of motion, kinematic and centripetal force equations to the motion of bodies.
F. | Exam questions, quizzes, Lab discussion and applications, Written assignments |
| **7.** Describe Newton’s law of universal gravitation. (GEO 1, 3, 4, 5, 6) | A. Calculate the gravitational force between two bodies; and
B. Describe satellite motion using the application of the laws of universal gravitation. | Exam questions, quizzes, Lab discussion and applications, Written assignments |
8. **Evaluate** the concept of energy and its conservation. (GEO 1, 3, 4, 5, 6)
 A. *Derive* and *apply* the concept of work;
 B. *Explain* and *use* the concept of power to describe the expenditure of energy;
 C. *Differentiate* between and *apply* the concepts of kinetics and potential energy;
 D. Using kinetic and potential energy equations *demonstrate* the concept of conservation of energy; and
 E. *Apply* the concept of conservation of energy to the analysis of real-world situations.
 Exam questions, quizzes, Lab discussion and applications, Written assignments

9. **Summarize** the characteristics of momentum and its conservation. (GEO 1, 3, 4, 5, 6)
 A. *Apply* the concepts of conservation of momentum to the analysis of motion; and
 B. *Apply* the concepts of conservation of momentum to analysis of collisions in one dimension.
 quizes, Lab discussion and applications, Written assignments

10. **Apply** the concepts of rotational motion to the analysis of rotating bodies (GEO 1, 3, 4, 5, 6)
 A. *Derive* and *apply* the equations for rotational kinematics;
 B. *Discuss* and *apply* the concept of the moment of inertia;
 C. *Apply* Newton’s laws in the solution of problems in rotational motion;
 D. *Analyze* combined motion using equations for both translational and rotational motion; and
 E. *Define* and *apply* the concept of the conservation of angular momentum.
 Exam questions, quizzes, Lab discussion and applications, Written assignments

11. **Explain** and *apply* the concepts of simple harmonic motion. (GEO 1, 3, 4, 6)
 A. *Derive* and *apply* the kinematic equations for simple harmonic motion;
 B. *Apply* the concepts of conservation of energy to simple harmonic motion;
 C. *Analyze* the potential energy of a spring; and
 D. *Apply* the principles of simple harmonic motion to the analysis of the simple pendulum.
 Exam questions, quizzes, Lab discussion and applications, Written assignments

*Written assignments may vary within course objectives.
*GEO (General Education Objectives) are listed in the Current college catalog

7. **COURSE CONTENT:**
 This course includes lectures, problem solving sessions, out of class assignments, a weekly physics laboratory, quizzes, and unit exams along with the comprehensive final examination. Topics covered during the semester will include: measurements, vectors, kinematics, Newton’s law of motion, equilibrium, uniform circular motion and gravitation, energy, momentum, rotational motion, simple harmonic motion and wave motion

 Lectures provide a framework of concepts and vocabularies that will enable students to independently learn course material. Laboratories are designed to reinforce lecture material, provide hands on skill and conduct group-learning activities. The major educational thrust of the course requires considerable independent reading and study by each student. It is understood that lecture and lab topics do not progress together, hence some chapter topics will be covered as appropriate during the lab sessions.
8. TENTATIVE COURSE SCHEDULE:

<table>
<thead>
<tr>
<th>DATE</th>
<th>LECTURE TOPICS</th>
<th>CHAPTER</th>
<th>Lab Assignment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 7</td>
<td>Dimensions, Measurement and Uncertainty, Units and changing units, Estimations, significant figures In-Class Assignment, solving problems</td>
<td>Chapter 1 Sections 1.1 - 1.7</td>
<td>Theory of errors, error analysis, drawing graphs on Excel, data analysis,</td>
</tr>
<tr>
<td>Sep 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Introduction to vectors and scalars Kinematics in one-dimension Displacement, velocity, acceleration, solving problems, Quiz</td>
<td>Chapter 2 Sections: 2.1 - 2.4</td>
<td>Measurements, uncertainties, simple pendulum, finding an unknown from a slope of a graph</td>
</tr>
<tr>
<td>Sep 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 19</td>
<td>Chapter 2 cont. Motion at constant acceleration, freely falling objects, graphical analysis of linear motion, In-class tutorial, Quiz Chapter 3 Vectors- addition and subtraction, adding vectors by components.</td>
<td>Sections 2.5 – 2.8 Chapter 3 Sections 3.1 – 3.4</td>
<td>Introduction to Motion</td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 21</td>
<td>Exam 1 Sep 28 Chapter 3 Cont. Kinematics in two –dimensions (projectile motion), relative velocity**</td>
<td>Sections 3.5, 3.6 and 3.8</td>
<td>Acceleration due to gravity, “g” using Free Fall</td>
</tr>
<tr>
<td>Sep 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Chapter 4 Force, Newton’s laws of motion, Force of gravity, Normal force, free-body diagrams, friction, inclined plane, examples, in-class assignment, Examples, Quiz</td>
<td>Chapter 4 Sections 4.1 - 4.6 and 4.7 - 4.8</td>
<td>Vectors and Force Table</td>
</tr>
<tr>
<td>Oct 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Chapter 5 Circular Motion, Motion in banked and unbanked surfaces, Newton’s law of Universal Gravitation, In-class assignment, Quiz</td>
<td>Chapter 5 Sections: 5.1 – 5.3, 5.5</td>
<td>Projectile Motion</td>
</tr>
<tr>
<td>Oct 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Chapter 5 continued, gravity near Earth’s surface, weightlessness, Types of forces in nature, examples. Chapter 6: Work and Energy, kinetic energy, work-energy principle, potential energy, In-class tutorial, quiz</td>
<td>sections: 5.6, 5.7 and 5.10 Chapter 6 Sections: 6.1, 6.3 – 6.5</td>
<td>Friction</td>
</tr>
<tr>
<td>Oct 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All project reports are due Oct 19
<table>
<thead>
<tr>
<th>Week 8</th>
<th>Oct 26 Oct 31</th>
<th>Chapter 6 cont. Energy conservation, Power, examples Chapter 7 Momentum, Impulse, conservation of momentum collisions, examples, in-class assignment, quiz</th>
<th>Chapter 6, sections: 6.6–6.8, 6.10 Sections: 7.1-7.4</th>
<th>Circular Motion/Centripetal force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 9</td>
<td>Nov 2 Nov 7</td>
<td>Chapter 7 cont. Elastic and inelastic collisions Center of mass, examples, review Exam 2 (Nov 7)</td>
<td>Chapter 7, section 7.5, 7.6, 7.8</td>
<td>Inclined plane</td>
</tr>
<tr>
<td>Week 10</td>
<td>Nov 9 Nov 14</td>
<td>Chapter 8, Angular velocity and acceleration, rolling, torque, rotational kinetic energy, examples, In-class assignment, quiz</td>
<td>Chapter 8, Sections 8.1 - 8.6</td>
<td>Conservation of Energy</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov 16 Nov 21</td>
<td>Chapter 8 continued. angular momentum and its conservation, Static Equilibrium, applications to muscles and joints, stability and balance examples, in-class assignment, quiz</td>
<td>Chapter 8 Sections 8.7 - 8.8</td>
<td>Moment of Inertia</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov 23 – Nov 27</td>
<td>Thanksgiving Holiday No classes</td>
<td>No lab</td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Nov 28 Nov 30</td>
<td>Oscillations and Waves, periodic motion, Simple Harmonic Motion, energy in SHM, spring oscillations, simple pendulum, examples, quiz</td>
<td>Chapter 11 Sections 11.1 – 11.4</td>
<td>To be announced</td>
</tr>
<tr>
<td>Week 14</td>
<td>Dec 5 Dec 7</td>
<td>Transverse and longitudinal waves, reflection and transmission, interference, principle of superposition, application of conservation of energy to simple harmonic motion, Potential energy of a spring, review, quiz</td>
<td>Sections 11.7 – 11.10 Review</td>
<td>Oscillations-Spring</td>
</tr>
<tr>
<td>Dec 12</td>
<td></td>
<td>CUMULATIVE FINAL EXAM December 12 (Monday), 12.00-2.00 PM</td>
<td>No lab</td>
<td></td>
</tr>
</tbody>
</table>

* Lab experiments are subjected to change
** optional sections
9. REQUIREMENTS FOR COURSE EVALUATION AND GRADING:
The course grade will be based upon lab assignments, midterm exams, quizzes and workshop
tutorials, writing assignment (research paper), homework and a cumulative final exam.
Lecture exams, the final exam, quizzes and tutorials will generally consist of multiple choice, short
answer questions, true/false and matching questions. Each quiz or exam is designed to address the
goals and objectives of the course.

(A). HOMEWORK:
Homework will be assigned on a regular basis on Mastering Physics website. Solutions to some
selected problems will be discussed in the class. It is your responsibility to attempt all the problems.
Solutions to homework problems are due one week after the assigned date. No late homework will
be accepted. Lowest homework grade will be dropped.

(B). QUIZZES and WORKSHOP TUTORIALS:
I will give a short quiz (approximately 15 minutes) at the end of the class. You will attempt quiz
problems individually. The lowest quiz grade will be dropped. I intend to give 8-10 quizzes. In
addition, “Workshop Tutorials” will also be given during class period. These tutorials will
incorporate cooperative learning. Solutions to these problems should be attempted and reached as a
group. Every member of your group contributes to any work that is submitted. Each group will
submit only one solution sheet with names of the members of the group. I anticipate giving 6-7
workshop tutorials. The lowest grade will be dropped.

(C). LAB EXPERIMENTS:
The laboratory portion of this course will consist of various experimental demonstrations that
require hands-on participation and student-to-student interactions. The laboratory evaluations will
generally consist of one or more of the following: formal laboratory reports, end of the lab
questions, short essay, short answer, true/false and mathematical and statistical analysis of real
world situations. The lab reports and evaluations are designed to assess the core goals and
objectives of the course. (GEO 1, 3, 4, 5, 6, 7). Students are required to enter the lab on time.
There are no make-up labs.

(D). EXAMS:
Lecture Exams and the final exam will generally consist of mathematical word problems, and may
include multiple choices, true/false, and matching and short answer questions. Each exam is
designed to address the goals and objectives of the course. (GEO 3, 4, 6)
During the exams and quizzes, cell phones may not be used. No photographs of quizzes or exams
should be taken. All exams and quizzes should be returned to the instructor. No students should
leave the lecture room without handing over the exam/quiz personally.
During exams, a sign-up sheet will be given to prove that student has personally submitted his/her
exam along with the scantron sheet. This rule will be followed strictly. In addition, students are
kindly requested to distribute around the class during exams and quizzes to retain the integrity of
tests. Please refer to the make-up policy in case you missed an exam.

(E). Course Project:
A course project will be assigned for students to do independent research and submit a paper or a
digital poster. Instructor will provide with research topics. Students are advised to submit their
papers/digital poster via email. Copied or plagiarized papers will not be accepted. Detailed
instructions pertaining to the research paper will be given during the first week of the class
(F). GRADE: Your grade for the course will be determined as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes (lowest grade will be dropped)</td>
<td>10%</td>
</tr>
<tr>
<td>Homework & In-Class Assignments (lowest grade will be dropped)</td>
<td>10%</td>
</tr>
<tr>
<td>Project (research paper/digital poster)</td>
<td>10%</td>
</tr>
<tr>
<td>Laboratory (lowest lab grade will be dropped)</td>
<td>20%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>15%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

(G). Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% and above</td>
<td>A</td>
</tr>
<tr>
<td>80-89%</td>
<td>B</td>
</tr>
<tr>
<td>70-79%</td>
<td>C</td>
</tr>
<tr>
<td>60-69%</td>
<td>D</td>
</tr>
<tr>
<td>59% and below</td>
<td>F</td>
</tr>
</tbody>
</table>

(H). PREPARATION:
It is important that you read each chapter and familiarize yourself with theoretical concepts. Please come to the class prepared. Read relevant chapters of the text book before you come to the class. This certainly will help you to understand the lectures better and ask questions and clarifications then and there. It will also help you to motivate you and keep you updated of the course material. Please attend every class, take good notes, discuss with your friends. Doing homework problems is an invaluable practice for understanding the material and it is also an essential part of preparing you for exams. It will be difficult to obtain a good grade in this course without making a conscientious effort to do all of the homework problems. You are encouraged to work together to solve problems.

(I). Teaching Strategies and Learning Experiences:
In fulfilling these course objectives, the student is expected to work with the instructor by:

1. Attending every class
2. Participating actively in class discussions and activities
3. Reading and synthesizing information found in the textbook
4. Completing lecture quizzes (specific topic, details and grading rubric provided by individual instructors, the lowest quiz grade will be dropped. **No make-up quizzes will be given**)
5. Completing two exams based on material from the text, other readings and lecture.
6. Completing one comprehensive final exam based on major physical concepts (theoretical and experimental)

(J). ATTENDANCE:
Attendance will be taken at the beginning of each class and each student is expected to attend each scheduled class. If you are going to be absent, please email your instructor before class so he may let you know what was covered that day. This will allow your instructor to provide you with handouts/quizzes given on that day. Absences from class do not relieve students from responsibility for missed assignments, material covered in class or exams. Students must keep in mind, however, that it is ultimately their responsibility to learn the material covered in the class.
(K). POLICIES:

(i) Make-up Policy:
If a student is absent for an exam, it is his/her responsibility to contact the instructor on the day of the exam or before the exam with a legitimate (documented) excuse in order to schedule a make-up. If the student does not comply, they will get a zero for that exam. The student will be scheduled to make-up the exam on the next day. There will be very few exceptions! There are no make-up labs. Missed quizzes may not be made up. (Lowest quiz grade will be dropped) Technology is not always reliable and last minute personal computer/internet technical problems will not be acceptable reasons for late submissions.

(ii) Class Policies:
Students communicating with the instructor by email must use their Wor-Wic student email account. Filters on the college email system will consider email from outside sources as “Junk” and it will be discarded. For assistance with your student email account, please visit the Student Services office. Communication with your instructor, preferably in person, is extremely important to success in this course. Students, who are struggling academically in a course, are especially encouraged to seek help from the instructor.

(iii) Assignment Submission Policies:
Almost all assignments must be submitted to the instructor on or before due date. Homework assignments should be submitted on Mastering-Physics website. Your “Writing assignment/Digital poster” should be submitted via blackboard. Exceptions to this policy may be made by the instructor during epidemics or emergencies as decided by the instructor. Any late assignment(s), including lab reports, will lose 10% each calendar day late (not including weekends). Assignments more than a week late will not be accepted.

10. Writing Assignments:
The written assignments included in this course are designed to stimulate critical thinking, teach students to use appropriate technology for their preparation and to learn to use the electronic library database collections available to them in Wor-Wic’s electronic library. Writing assignments will help students obtain and communicate information effectively and to stimulate proper techniques for reading and analyzing written material.

The “Writing across the Curriculum” requirements for this course will be met through the submission of formal written laboratory reports each week, and through the submission of a paper or a digital poster on a topic assigned by the instructor. As with all of the learning tasks included in this course, the writing assignment addresses the core course goals and objectives. (GEO 1, 3, 4, 5, 7, 8, 9)

A course project will be assigned for students to do independent research and submit a paper or a digital poster. Instructor will provide with research topics. Students are advised to submit their papers/digital poster via Blackboard. Copied or plagiarized papers will not be accepted. Detailed instructions pertaining to the research paper/poster will be given during the first week of the class.

The paper/poster will count for 10% of your overall grade in the course. If you follow the directions and present a good paper/poster, you will have a great opportunity to improve your overall grade for the course. Be sure to check each of the “Requirements” and “Format” items given to you by the instructor during the first week of the class to confirm that you have included everything that is necessary to complete this assignment.
If you wish to have additional help on a writing assignment/digital poster, you may schedule an appointment with a writing conference instructor by going to your MyWorWic portal, selecting the Student Resources tab and then selecting Academic Support. Click on Writing Conferences to schedule a conference. Limited time slots are available, so an appointment is required. If you cannot keep your appointment, it is your responsibility to cancel it by going back to the Writing Conferences link. Please note that writing conferences are conducted in BH 227. (410-334-2842) Appointments can be made through Wor-Wic website.

11. Electronic Assignment:
The student’s choice of paper, digital poster or power point presentation will require the student to obtain information electronically. Student has the access to the Electronic Library Database Collection at the Wor-Wic Media Library. As with all of the learning tasks included in this course this task addresses the core course goals and objectives. (GEO 1, 3, 4, 5, 7, 8, 9). This section is related to the paper/poster discussed in section 10 above.

12. Laboratory:
Students will perform a variety of experiments in the laboratory. In each experiment, the student will determine the theoretical and experimental values and compare them. The student will enter the experimental data into a data sheet along with the results of the theoretical calculations and percentage errors and then hand in this information as part of the laboratory report. Post lab questions are given and they will be graded. All graphs should be computer generated unless otherwise stated by the instructor. The graphs should be labeled properly with an appropriate title and a data table should be accompanied with the graph.

13. ACADEMIC INTEGRITY AND HONESTY POLICY:
Academic integrity is expected of all students. Cheating and plagiarism are violations of academic integrity. Any student found violating the academic policy will receive no grade for the assignment and then the matter will be turned over to the Student Disciplinary Committee. Documented evidence of the plagiarism or cheating will be kept in the Math and Science Office.

(i) Plagiarism: In both oral and written communication, the following guidelines for avoiding plagiarism must be followed:

1. Any words quoted directly from a source must be in quotation marks and cited.
2. Any paraphrasing or rephrasing of the words and/or ideas of a source must be cited.
3. Any ideas or examples derived from a source that are not in the public domain or of general knowledge must be cited.
4. **ALL PAPERS AND PRESENTATIONS MUST BE THE STUDENT’S OWN WORK.**

(ii) Cheating:
Cheating is the act of obtaining information or data improperly or by dishonest or deceitful means. Examples of cheating are, copying from other students’ test paper, obtaining information illegally on tests, and using crib notes or other deceitful practices.
The college guidelines concerning academic misconduct will be strictly enforced in this course. Please refer to the Appendix of the most current catalog for the full description of policies pertaining to student conduct. (GEO 8, 9)
During exams, tutorials and quizzes, cell phones cannot be used. No exam or quiz can be photographed.
14. Emergency Information Statement:
In the event of severe inclement weather or other emergency, information about the closing of the college will be communicated via e2Campus and the College's website. Faculty will communicate with students about their courses and course requirements, such as assignments, quiz and exam dates, and class and grading policies, via Blackboard. Students will be responsible for completing all assignments in accordance with class policies.

15. SERVICES FOR STUDENTS WITH DISABILITIES:
Wor-Wic provides reasonable accommodations for students with disabilities, in compliance with the Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act of 1973. If you are in need of accommodations, please contact the counseling office at (410) 334-2899. For more information, see Wor-Wic’s Services for Students with Disabilities web page.

Best Wishes for a productive semester!
Enjoy your class!